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Motions of a Payload on a Tethered,
Aerodynamic-Shape Balloon Using
Various Cable Lengths

1. INTRODUCTION

In a typical year, the USAF tethered-balloon schedule might include advanced
parachute development tests, atmospheric sampling, boundary-layer measure-
ments, communications experiments, and drop tests of space components. ¥ The
slow, very limited motions of a well-designed tethered balloon system do not af-
‘fect most of the testing activities that require a "tower" or platform at heights up
to 6 km MSL. But if the payload will employ pointing controls, or an exception-
ally sensitive méchanical device, then the motions of the balloon system must be
considered in designing the instrumentation and in planning the test procedure.

To provide this information, AFCRL has been conducting experimental stability
studies of various tethered systems which are currently in use at the USA tethered
balloon test facilities at Holloman AFB and White Sands Missile Range (WSMR),
New Mexico.

The 2.83 X 10
kite shape (Figure 1). This design has been completely modernized, using neo-
prene-coated nylon balloon fabric, a high-speed winch, lightweight, high strength
NOLARO tether cable, and state-of-the-art electronics for telemetry and

3 m3 balloon flown at Fair Site on WSMR has a clagsic British

(Received for publication 14 March 1975)

*The Aerospace Instrumentation Laboratory, Air Force Cambridge Research
Laboratories (AFCRL) conducts the USAF balloon activities at permanent sites
in New Mexico and at temporary sites using mobile equipment wherever the
experiment is required.



Figure 1. The 2.83 x 103 3 A-Shape Balloon at Fair Site

. €ommand-control of the experimental operations and safety functions. This bal-
loon can support 2.2 X 103 N payloads at 3.6 km elevation above ground at Fair
Site (elevation 1.44 km MSL), and somewhat larger loads at lower altitudes, Di-
mensions, position of the center of gravity, center of buoyancy, and rigging con-
fluence point are shown in Appendix A. )

tions of a payload at the confluence point of the 2.83 X 103 m3 British kite balloon.
These tests were made during a period of seven days in April 1973 at Fair Site,
New Mexico. The balloon was flown on = 2.74 km, 5/8-in.diam NOLARO cable

in average winds up to 15 m/sec; and on a 1.52 km cable of the Same diameter

in average winds up to 9.3 m/sec. There also were two tests using an 0.305 km
cable in winds below 5. m/sec.

The position of the payload in Cartesian coordinites, and its velocity and
acceleration relative to ground for I-sec intervals were determined by the WSMR
cinetheodolite svstem. The optical target was a black and white pattern painted
on the payload. The pavload was mounted on a horizontal 1oad bar, one end of
which was rigidly attached to the quadplate at the confluence point, and the other
end, through cables to load patches on the balloon (Figures | and 2).

8



Figure 2. The Optical Target

Profiles of wind velocity from surface level to the balloon altitude were de-
rived from observations of Pliot BALloons (PIBALS) which were released as
close in time as possible to the start and end of each test. The balloon-borne
anemometer wind data, Payload pitch and roli angles, and cable tension at the
confluence point were recorded by continuous telemetry.

Trajectories in the horizontal and vertical planes are presented for several
typical flights. In some cases the horizontal motion has also been converted to
displacements in directions parallel and normal to the PIBAL-determined wind
direction at balloon altitude. For each flight test, the maximum values of dig-
Placements, pitch and roll angles, ground speed and acceleration are tabulated
together with the range in values of cable tension at the confluence point, the ex-
tremes, and average values of relative wind speed (anemometer), and the dis-
Placement of the balloon "equilibrium position" from the winch. (The equilibrium
position is the estimated location on the ground above which the balloon tended to
hover or to wander. ) Empirical relationships among some of thege parameters
are derived and the relevance of these results to flight planning is briefly dis-

cussed.

2. FLIGHT RESULTS

2.1 Rights on 2.74 km Cable (Nominal Length)

Results for the five flights on 2.67, 2.68, and 2.74 km lengths of cable are
summarized in Tables 1(a) and 1(b).* The "typical maximum ground speed" is

*Each tabulation of results is presented in two tables, one using metric, and one,
British units.
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the approximate maximum speed attained during a typical excursion of the balloon,
The maximum tangential speed is the highest value recorded during the 20-min
test.

2.1.1 FLIGHT 11R3

Figure 3 is the horizontal trajectory of the balloon for Flight 11R3, when the
PIBAL-detected wind was 9.3 m/sec. The target altitude and displacement in the
directions approximately parallel and transverse to the PIBAL wind direction ver-
sus time, and the wind profile acting along the cable are also plotted in Figure 3.

The transverse displacement curve Suggests a 480-sec periodicity, with the
curve between 220 and 700 gec fairly well duplicated between 700 and 1180 sec.
Longitudinal displacements tend to correlate with the very small simultaneous
changes in altitude. The maximum range in altitude was 12.8 m in 20 min. Dur-
ing most of this flight the tangential ground speed was 0.30 m/sec or less; in
one 5-sec interval, 240 to 245 sec, this speed peaked at 1.8 m/sec. Accelera-~
tion was less than 0.55 m/secz. Barely discernible changes in pitch (1.2°) and
roll (1.8°) and a gradual 1.78 X 103-N increase in the otherwise steady tension
occurred at the times noted on Figure 3. The relative wind spéed at the target
was 7.2 to 9.8 m/sec.

2.1.2 FLIGHT.12R1

In 6.2 to 8.8 m/sec wind, Flight 12R1 had an almost linear horizontal trajec-
tory (Figure 4) which, like Flight 11R3, might also be expected to reveal simple
modes of orthogonal motions relative to the wind direction. Here the balloon
appears to have been displaced by an obliquely directed, slow gust from which it
made a highly damped recovery. Maximum displacement in altitude was 23 m
and maximum tangential speed was 2.1 m/sec. There was no measurable rolling
motion (less than 1.8°) and no pitching until the last 3.5 min of flight when the
target gently pitched toward 1+4.8° about every 10 sec. Cable tension at the con-
fluence point was steady except during the same pitching interval, when it varied
+222 N from 1.16 X 104 N. The slant range of the target from the winch was
highest during that interval.

2.1.3 FLIGHT 12R2

More complex motions and greater displacements and speeds occurred in the
gustier winds during the remaining flights on the 2.74 km tether (nominal length).
On Flight 12R2, for example, a ground speed as high as 8.6 m/sec was recorded,
acceleration reached 0.1 m/secz, and the maximum altitude displacement in the
20-min test period was 54 m. The PIBAL wind speed was only 7.7 to 8.2 m/sec
at float altitude, but the wind profiles shown with the horizontal trajectory,

14
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Figure 5, show that there had been an increase in the winds along the length of
the cable sometime during the test interval. (Unfortunately. due to a malfunction,
anemometer data were not recorded during this flight.) For one 6.7-min period’
the balloon hovered above an area less than 91m X 91m.

Figure 6 shows the horizontal trajectory converted to displacements parallel
and transverse to the wind direction at balloon height. The rolling and pitching
motions can be directly associated with these directions. During the more rapid,
large excursions that occurred between 750 and 1200 sec, the package was grad-
ually rolling to reach the maximum roll displacement (16°) at the time of maxi-
mum transverse displacement. Brief episodes of pitching motion coincided with
sharp reversals in the balloon's longitudinal motion; in one instance the angle of
pitch reached 18, 2°,

2.1.4 FLIGHT 13R2

The highest average wind speed during these tests, 14 m/sec, occurred dur-
ing Flight 13R2. The cable length was 2.67 km. The horizontal trajectory,
Figure 7, clearly shows the tendency of these balloons to produce ground tracks
resembli'ng.figure eights. Maximum ground speed was 9.4 m/sec, and average
anemometer wind speed was 14 m/sec, with one peak at 22 m/sec. Note the
- wind profile along the cable as detected by PIBAL just before this test. Not only
were the winds near 609 m AGL unusually high compared with the other tests,
there were also large gradients. When the test ended, this condition had changed,
with winds generally 7.2 to 8.7 m/sec at all levels below the balloon. Predict-
ably, the largest excursions occurred during the first half of the test,

2.2 Flights on the 1.52 km Cable
2.2.1 GROUND TRAJECTORIES

Tables 2(a) and 2(b) summarize the results of the tests using the 1.52 km
cable. Figure 8 shows the horizontal trajectory for Flight 11R4, when the wind
profile generally was below 2.6 m/sec; Figure 9, for 16R1, when winds along
the cable were 6.2 m/sec or less, and the balloon-level wind was 5.1 to 6.7 m/sec;
and Figure 10, for 16R5, when cable winds were 7.7 m/sec or higher, and bal-
loon-level wind was 5.1 to 8.7 m/sec. Due to the increased drag forces from the
steady components of the winds, the displacement of the balloon from the winch
was greater in higher wind fields. Note, however, that the extent of wander was
unrelated to the balloon-level average wind speed. There was greatest wander
(Figure 8) when the average wind speed was least; and the area of wander at
8.7 m/sec balloon-level wind was not appreciably different from the wander at
5.1to 6.7 m/sec (Figures 9 and 10). Closer examination shows that without the
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two unusually large excursions shown by dotted line on Figure 8, and the one un-
usual excursion on Figux'e. 8, the areas of wander are qQuite similar for all three
tests. Obviously the outer bounds of the areas of wander are reactions to isolated
gusts.

{km}
DISPLACEMENT 3.89 - ALTITUDE MSL
TRANSVERSE -—:zgu
TO WIND 386 |- f
183
.{m)
3.80
549 |
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A e oY
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Figure 6. Horizontal Displacement Relative to the Wind vs Time, Flight 12R2
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Figures 11 through 14 are ground trajectories for the remaining flights
using the 1.52 km cable. The patterns of wander in Figures 11, 12, and 13 are
quite similar, although the corresponding PIBAL wind profiles are different.
From Figure 14, there is no doubt that flight conditions must have changed
abruptly soon after the start of the test. This flight underscores the principal
uncertainty in interpreting tethered-balloon flight motion data—usually we have
no independent means of monitoring the instantaneous wind.

2.2.2 FLIGHT 16R2

Flight 16R2 is considered typical of the flight performance on the 1.52 km
cable. Displacements transverse and parallel to the PIBAL wind are plotted in
Figure 15. Figure 16 shows the tangential acceleration and speed relative to
ground, tension at the confluence point, slant range of target from winch, and
altitude versus time. A

The closest correlation among the data is between tension and slant range
(Figure 16). When tension was the greatest, the balloon was near to the winch in
terms of horizontal displacement parallel to the wind direction (see Figures 15
and 16) and flying high; momentarily the balloon had maximum dynamic lift and
the increased tension stretched the cable. Conversely, when tension was least,
the slant range and altitude also were at, or almost at, minimum, and the balloon
was at maximum horizontal displacement in the wind direction and at a point of
inflection in its motion trénsverse to the wind (see points Tmin)‘ At times of
peaks in cable tension, the tangential acceleration along the balloon trajectory
was not maximum [Figure 16] (but the radius of curvature was small and the
centripetal acceleration correspondingly was high). At the times when accelera-
tion along the trajectory was maximum, there were secondary peaks of tension.

When the package rolled (occasionally up to 14.4°) the rolling motion was
in phase with the large transverse displacements,

2.3 Flight on 914 m Cable

Flight 11R2 (Table 3) was very steady in 2.1 m/sec winds. Altitude range
was 1.8 m, and the area of wander, 14.6 X 40.8 m. Balloon displacement was
about 47.2 m from the winch. Roll angle never exceeded 3.6°, and pitch varied
%1.2° to about 4.8°. Maximum ground speed was 0.91 m/sec, and speed relative
to the wind (or vice versa) averaged 5.1 m/sec.
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24 PFlights on 304.8 m Cable
2.4.1 FLIGHT 11R1

Flight 11R1 (Table 3) was in very calm wind. . The balloon floated directly
above the winch and the package remained within an area of only 12.5X 7.3 m.
Maximum range in altitude was 1.2 m -and maximum ground speed 0.61 m/sec.
Balloon displacement was about 6.1 m from the winch. Cable tension was very
steady, there was no measurable roll, and pitch occasionally reached a maximum
of 2.4 degrees.

2.4.2 FLIGHT 12R5

On Flight 12R5 the PIBAL wind was 4.1to 4.6 m/sec, but the values of
ground speed (5.8 m/sec), and average wind speed indicated by the anemometer
(5.5 m/sec), suggest that the PIBAL wind speed value is too low.

At this low altitude, due to higher air density, the drag force is larger than
at higher altitudes at the same wind speeds and the impulses due to similar gusts
(that is, the same change in speed vs time) are also étronger. The area of wan-
der was 131'm X 113 m; maximum range in altitude was 15.8m. The cable ten-
sion record shows strong damped oscillations at approximately 0.2 Hz — with the
short tether length the cable was vibrating, and the package was pitching (Fig-
ure 17).

2.5 Ambient Wind Speed (PIBAL vs Anemometer Mecasurement) -

Values for ambient wind speed were determined using both PIBALS and a
balloon-borne cup anemometer. Each of these devices has different inherent
errors, but both methods are commonly used to obtain a measure of the steady
state parameter we call ambient wind speed aloft. From an operational stand-
point, then, a comparison of the data is useful.

The standard PIBAL is inflated with a measured free lift and thereby as~
sumed to have a known, constant vertical ascent rate;1 on this basis the altitude
at successive intervals after PIBAL release is determined. At 1-min intervals,
azimuth and elevation angles of the balloon position are read from the tracking
theodolite. The direction and speed of the PIBAL are computed from these data
and averaged over a suitable interval of height (152 m for these tests). The
PIBAL speed vector is taken as the wind speed vector. In addition to the uncer-
tainty due to taking a single sample in a dynamic atmosphere, the assumption of
a constant vertical ascent rate can introduce a large error in a PIBAL-determined

wind speed.

1. Manual of Winds Aloft Observations, Circular O, Hq AWS, (MATS) USAF.
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Figure 17, Telemetry Record: Tension and Pitch Angle vs Time
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A balloon-borne anemometer always measures a wind speed relative to the
motion of the balloon, rather than relative to ground. It affords frequent, or con-
tinuous sampling, however, and if the balloon is stable, if the anemometer is
placed outside the boundary layer of the balloon, and if the relative wind speed
remaing above the anemometer threshold, then the average reading should be
significant.

Figure 18 shows the average anemometer value obtained by graphically
scaling the telemetry reeord for each 20-min test, plotted with the PIBAL data,
(On two flights the winds were below threshold for the anemometer, and on one,
data were not recorded.) For 11 flights the agreement is very good. Large de-
viations occurred for one flight each using 2.74, 1.52, 0.914, and 0.305-km ’
cable length. Barring gross human errors in the observations, presumably the
PIBAL sample was not typical of the ambient wind during those flights.

15.4
129 (—
10.3 [~
12RS  12R4
®
727

THRESHOLD

ANEMOMETER DATA (AVG) (m/sec)
o

26

l | | 1 |
0 2,6 5.1 7.7 10.3 129 154

PIBAL DATA (m/sec)

Figure 18. Average Anemometer Wind Speed vs PIBAL
Wind Speed
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2.6 Balloon Horizontal Displacement , d

tended to wander. The distance between this location and the winch is arbitrarily
defined as the horizontal displacement, d,. (In view of the natural variability of
the winds and the occurrence during some flights of a few unusually strong gusts,

methods for d.)
2.6.1 DISPLACEMENT, d, Vs AMBIENT WIND SPEED

Figure 19 shows values of d plotted versus the PIBAL-detected wind speed
at balloon altitude, Vw, for nominal cable lengths, L, of 1.52 km and 2.74 km.
These curves suggest a simple relationship between displacement and ambient
wind speed for given lengths of the same cable. Figure 20 shows values of the
- logarithm of (d) to be roughly proportional to the logarithm of (Vw) for constant

L. The relationship can be fairly well represented by the expression: ’

1.7
d = f(L) Vw ) (1)

in which the value of f (L) ig determined by the intercept on the graph, Figure 20,
Thus, the data are in reasonable agreement with the basic theory: in equili-

brium, the balloon displacement ig determined by the lift and drag forces on the

balloon, which are proportional to the second power of the relative wind speed —

gravitational forces along the cable, all of which are implicit in f (L),

The actual equations of equilibrium for a'single-tethered balloon system in a
steady wind are, in fact, far from being so simple, because the aerodynamic co-
efficients and the angle of attack of the aerodynamic-shape balloon vary with wind
speed, and because the cable is immersed in a wind field in which the direction
and speed of the wind can vary greatly along the length of the cable.* There are
few, if any, useful tethered systems for which the cable aerodynamic forces are
negligible; these forces can be the critical elements in the system performance.
mare a number of recent analytical studies in which a computerized model

of the cable is used to predict the cable profile and displacement of a tethered
balloon system. The usual procedure is to write a program in which the cable
shape is approximated by an arbitrary number of linked, linear segments. The
effective air density and wind vector acting upon each Segment are used to deter-
mine the aerodynamic forces on that segment, Starting at the confluence point,
the equation of equilibrium is expressed for each consecutive segment in order

to determine its displacement, orientation and tension, ending with those values
at the lower extremity of the cable at the winch,
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2.7 Balloon Flight Altitude
2.7.1 ALTITUDE VS DISPLACEMENT

In Figure 21, the average (most frequent value) float altitude is plotted versus
horizontal displacement for the flights on the 1.52- and 2.74-km cables.

Despite the somewhat arbitrary choices for values of d, and the fact that each
flight experienced a different wind profile along the cable, the data tend to conform
quite well to a simple, non-linear relationship between altitude and displacement, d.

2.7.2 RANGE IN ALTITUDE VS WIND SPEED

Figure 22 shows the range in altitude during a 20-min flight versus the am-
bient wind speed. The balloon flew highest and had least vertical displacement in
a 9.3 m/sec wind on the 2,74-km cable (Flight 11R3) and in a wind less than
5.1 m/sec on the 1.52-km cable (Flight 11R4). Although there usually is a wind
speed range in which the aerodynamic characteristics of a particular balloon are
optimum, these 5.1-9.3 m/sec wind speeds are considered too low to produce,
for example, a maximum ratio of aerodynamic lift to drag force, and the explana-~
tion must lie in other environmental parameters.

2.7.3 EFFECT OF SUPERHEAT AND CABLE DRAG

The flights cited above were made on the same day near noon, so that there
might have been useful static lift due to superheat. In each case, the winds along
the cable were very light (see Figures 3 and 8), and the anemometer records
indicate no strong gusts. The balloon also was very stable, but flying low, in
9.3 m/sec wind during the first part of Flight 16R3 which was flown at 1300 hr
when the vertical wind profile was about 10.2 m/sec all along the cable. The
cable length was 2.44 km and was subséquently foreshortened to 2.13 km due to
some cloudiness near the 2.74 km level.

The cloudiness can account for the fact that on all of the flights on April 16
the balloon was flying low. Cooler lifting gas can cause a decrease in helium
volume and hence a decrease in static lift of the balloon. Nevertheless, there
was a diurnal effect due to changing superheat. Compare the start times for the
"16R" flights, Table 2(a), with the maximum altitudes shown in Figure 22, and
note the decrease in altitude with time after noon, particularly Flights 16 R2 and
16R5, both at 17 knots, flown at noon and at 1500 hr, respectively.

Increased drag forces due to winds along the cable also tend to lower the
altitude. Although the actual vertical wind profile at a given instant during flight
is not known, it is reasonable to assume that the PIBAL profile closest in time
probably gives a useful indication of the actual profile. The highest altitudes
during Runs 16R2 and 16R5 occurred during the earlier portions of the respective
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MSL ALTITUDE (km) (2.74 km CABLE)
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MAX. TANGENTIAL GROUND SPEED (m/sec)

flights., From the corresponding PIBAL wind profiles, Figures 10 and 14, it
appears that the cable drag forces due to these winds were a little larger in
Flight 16R2, the noontime flight, and thus tended to lower the altitude in opposi-
tion to the superheat effect.

2.8 Ground Speeds and Accelerations

Each trajectory, however complex, is a continuous Succession of 3-dimen-
sional "excursions' in which the balloon speed is low near the extremes, and
relatively high at some intermediate point along the path. The low speed gener-
ally was 0.3 to 0.6 m/sec. On all of the flights [Tables 1(b), 2(b), and 3(b)] the
listed value of maximum speed tangent to the balloon trajectory was considerably
higher than the typical peak speed that was reached during most of the excursions
during the 20-min test. From the record of speed versus time shown in Figure 16,
it is clear that on the more complex trajectories there was no "typical" excursion;
in those cases the value listed as typical is the arithmetic average. .

Figure 23 shows the maximum ground speed and the maximum relative wind
speed recorded during the same flight. (They do not occur, of course, at the
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Figure 23. Maximum Ground Speed vs Maximum Relative Wind Speed
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same instant.) We have no information concerning the gust impulse which supplied
the energy to accelerate the balloon to maximum ground speed; however, for those
gusts that were encountered during the tests, the instantaneous balloon speed never
exceeded 9.4 m/sec when maximum "wind speed" on an individual flight was 12,2
to 19.5 m/sec. Similarly, on the 1.52-km cable, the maximum balloon speed was
limited to 7.9 m/sec when the maximum wind speed was 12.2 to 19.5 m/sec.

On all of the flights the acceleratxon relative to ground never exceeded
0.1G £ 0.05 G, (0.10 m/sec ). Infact, on most flights the most probable value
was less than 0.05 G. The acceleration versus time graph shown in Figure 16
is typical of the more complex motions.

2.9 “Wander”

In this report the range of the motion, traditionally called the horizontal
wander of the balloon, is arbitrarily defined as the maximum diagonal of the area
that includes all pomts in the horizontal trajectory. The measurements, deter-
mined graphically, are listed in Tables 1, 2, and 3.

To illustrate the overall system performance, wander versus ambient wind
speed are plotted in Figure 24,

Wander results from gust energy, which has no clear relationship to ambient
wind speed. Moreover, wander is affected by gusts acting along the cable as well
as on the balloon; therefore, a good correlation between wander and ambient wind
speed would be surprising. A better correlation is to be expected between wander
and the maximum tangential ground speed of the balloon, since both quantities are
the result of gusts (Figure 25),

2.10 Cable Tension at the Confluence Point

Cable tension at the confluence point is the magnitude of the vector which
balances the vector sum of (a) the static and aerodynamic lift of the balloon,
(b) the weight of the balloon and payload, and (c) the drag force on the balloon.

Since the cable angles and the angles of attack of the-balloon are not known,
a quantitative interpretation of the data relative to the aerodynamic characteris-
tics of the balloon has not been attempted. The range in values and the typical
value of tension for each flight are shown with the ambient wind speed in Fig-
ure 26. In most flights the extreme values occurred very infrequently,

2.10.1 TENSION VS SLANT RANGE

Typically, as noted in Section 2,2,2, and shown on Figure 16 for Flight 16R2,
extreme values in tension coincided with extremes in slant range, with the maxi-
mum tension occurring when the balloon was flying high and close in horizontal
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distance to the winch; and minimum tension, when the balloon was flying low, and
away from the winch. Highly damped quasiharmonic variations were observed
during flights at altitudes considerably below the design altitude of the system.
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Figure 24. Wander vs Ambient Wind Speed

2.10.2 TENSION AND PITCH ANGLE

On all of the flights, when there was a significant, abrupt change in tension,
there was a corresponding change in pitch angle of the target box. The increments
were not proportional. The pitch angle variations lagged the change in tension by
3 to 4 sec (Figure 17). This has been determined not to be 2 peculiarity of the
instrumentation; it may be a balloon system modal characteristic, or it may be
directly due to the cable-payload coupling arrangement (Figure 2).
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Figure 25. Wander vs Maximum Tangential
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2.11 Damping Characteristics

Figureé 3 through 7 show three quite different patterns of actual motion
using the 2.74-km cable (2.67 km on Flight 13R2). The strong damping evident
in the almost linear trajectories (Figures 3 and 4) has already been noted. The
flights on the 1.52-km cable (Figures 8 and 9) in particular, also illustrate damp-
ing characteristics which enable the system to recover from a single, unusually
large, rapid excursion. Other possible modes, of course, may be less highly
damped. When successive gusts overlap or if several modes exist simultaneous-
ly, the damping becomes masked in the complex response (Figure 6, for example).
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3. DISCUSSION

3.1 Pertinent Analytical Studies

It is the essence of the scientific, experimental method that the results of
observations should be compared with theoretical predictions and the discrepan-
cies carefully analyzed. Ordinarily, experimental controls are devised so that
the test environment conforms closely to the theoretical premises. In this proj-
ect, however, the experimental endeavor was pragmatic. The problem in recon-
ciling theory and practice is due to the difficulty in devising a reasonably simple,
workable theory (model) that adequately describes the experimental environment.

In recent analytical studies of the stability and dynamic behavior of three
tethered balloon systems at Goodyear Aerospace Corporation, Doyle, Vorachek,
Burbick and Block in 1972 and 1973 developed a set of non-linear differential
equations to describe the motion in three dimensions (see Bibliography). The
tether line was modelled by three discrete, linear links. By assuming the bal-
loon to be near equilibrium, the equations were linearized and separated into mo-
tions parallel and transverse to the wind. The method of Laplace transforms was
applied to obtain the characteristic polynomial whose roots identify the natural and
damped frequencies and damping ratios of the oscillatory modes, and the decay of
the aperiodic modes, for essentially uncoupled orthogonal motions. The dynamics
of these motions under the influence of a simulated wind gust were predictéd by
humerically integrating the linearized equations of motion by digital computer.

The authors also have compared the results of their computerized analyses
with the observed motions of a 1.98 X 103 m3 A-shape balloon after it was dig-
Placed either parallel or transverse to the wind (in a simulation of a single gust).
The predicted and observed values for frequency of oscillation and mode shape
for longitudinal motion were in good agreement, but the displacement values for
both directions were not. In real life: (1) the balloon usually is not in quasi-
equilibrium and the orthogonal motions are not uncoupled; and (2) the forcing
functions, which are essentially the dynamic pressures acting on the balloon and
along the entire length of the cable, are gusts for which the individual time of
onset, pulse shape and duration, and direction relative to the instantaneous orien-
tation of the balloon are not known.

The analytical approach is invaluable in system design, making it possible to
study the effects of specific alterations in balloon shape, type or length of cable,
and payload weight, for example, However, it does not yet meet existing opera-
tional requirements for measurements of the actual displacements and extent of
wander of a tethered platform.
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The highly damped, low frequency modal characteristics of the large, A-shape
balloon on a long tether which have been demonstrated in these flights are consis-
tent with the predictions of the Goodyear analyses. Those theoretical studies also
predict that the system will oscillate as a lightly damped, upside-down simple pen-
dulum when flown at altitudes considerably below the design value. The flights on
the 914 m and 305m cables tend to confirm the pendulum-like motions, but the
observed oscillations were quite noticeably damped. The period of a 305m simple
pendulum is 36 sec; the observed period (of the target) was about 56 sec.

3.2 Flight Below Design Altitude

As the flight altitude of an aerodynamic-shape balloon with a ballonet (air
chamber) is decreased by shortening the tether length, the ballonet fills with an
amount of air equal to the decrease in lifting gas volume., The change in the rela-
tive volumes of lifting gas and ballonet air causes the location of the center of
mass to change relative to the center of pressure of the balloon. This change
introduces unbalanced moments which affect the flight characteristics of the sys-
tem at altitudes very different from the design altitude.

The single effect of changing the cable length (and altitude level) cannot be
isolated in the flight results because the wind fields could not be controlled, nor
could the variability of the winds during the various tests be quantitatively des-
cribed for comparison among the various tests. Nevertheless, it is noted that on
the flights using the 2.74 km cable, which is the length for which the system was
designed, the least displacements were recorded (Figures 3, 4, and 5) and the
maximum speeds during a typical excursion were generally less than on flights
in comparable wind speeds on the 1.52 km cable. (See also paragraph 2.4. 2.)

4. CONCLUSIONS

(1) Records of the instantaneous displacement, velocity and acceleration
relative to ground, speed relative to the instantaneous wind, and cable tension at
the confluence point have been obtained for a 2832 m3 British A-shape balloon on
5/8 in. diam NOLARO cable, flying at altitudes near 2.74 km, 2.44 km, 1.52 km,
914 m and 305 m above ground. (Ground elevation was 1436 m.) This was the
Primary objective of the experiment,

{2) The least motion was observed during a flight when the balloon was on
the 2.74 km cable (the design altitude) and ambient wind was approximately
9.3 m/sec. The maximum acceleration was less than 0. 1 G; on a typical excur-
sion from equilibrium the maximum ground speed was 0.61 m/sec. Maximum
pitch and roll angles of the payload were less than 1.2 and 1.8 deg, respectively,
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(3) In the highest ambient wind encountered on the 2.74 km cable (13.9 m/sec
in gusts estimated at 23.1 m/sec), the maximum ground speed of the balloon dur-
ing the 20-min test was 9.4 m/sec and maximum acceleration, 0.1 G.

(4) On the 1.52 km cable in the highest ambient wind (8.8 m/sec with gusts to
18.5 m/sec), the maximum tangential speed attained was 7.9 m/sec and maximum
acceleration 0.1 G. On a typical excursion, the ground speed reached 4.6 m/sec
and acceleration was less than 0.1 G,

(5) On the shortest cables, 914 m and 305 m, the system tended to oscillate
about its equilibrium position like an inverted, damped, simple pendulum. In mod-
erate winds on the 305 m cable, the cable vibrated longitudinally at approximately
0.2 Hz. '

(6) Quantitative interpretations of the data are generally precluded by the in-
ability to describe the time of onset, pulse shape, and duration of the gusts to
which the balloon and cable were subjected in the ever-changing real wind fields.
Measurements of yaw angle, balloon angle of attack, cable angles at both extremes,
and cable tension at the winch would also be required for detailed interpretations
of the motion; nevertheless,

(a) For a given length of cable, L, the horizontal distance, d, between
the winch and the location above which the balloon tended to hover or wander, is
approximately related to the ambient wind speed, Ver by the expression:

_ 1.7
d = f(LV_

where f(L) is a lumped parameter determined by air density at float altitude and
the aerodynamic and gravitational forces along the cable.

(b) The separate effects of changing superheat and different vertical wind
profiles on the cable are discernible on some flights.

(7) The large A-shape balloon on a long cable is overdamped so that it re-
covers from an unusually high gust in a single excursion.

(8) During flights on the 2.74 km and 1.52 km cable, the predominant mode
can be described by resolving the motion into directions parallel and transverse
to the ambient wind; thus,

(a) The altitude varied (not proportionally) with horizontal displacements
fro the tethering winch parallel to the wind, with the highest altitudes nearest
the tethering winch. When pitching was detectable, it occurred near both extremes
of this longitudinal displacement.

(b) The transverse motion was less highly damped, and rolling was di-
rectly associated with this motion, the maximum roll angle coinciding with maxi-

mum transverse displacement,
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(¢) Large increases in cable tension at the confluence point were asso-
ciated with the highest values of slant range. When the latter occurred, the hori-
zontal distance to the winch was relatively small and the altitude relatively high.
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Appendix A

Table Al. 2.83 X 103 m3 Kite Balloon (See Figure A1)

Maximum Capacity of Envelope ...
Maximum Volume of Air-Filled Tail.
Maximum Diameter of Envelope . . .
Length of Envelope . . . ... ....
Overall Width with Fins Inflated . . .

Overall Height from Bottom of Rudder. o« .

Height of Balloon from Rigging Confluence Point

Ballonet Capacity . . . . ... . e et e e e e

Weight with Accessories Less Cable. . . . . ..

2.83 X 103 m3
243 m°

13.2 m

36.6 m

146 m

16.2 m

22.3 m

To permit a flying
altitude of 4.57 km

8.1X 103 N
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